
M.Sc-IT (OLD) Examination,2013

Theory of Computation

Paper: Fourth

1.a. W = aaabbb

 b. L={ a
n
b

n
 , n>=0}

--

ii) The set which is expressed by regular expression is regular set. Ex:

{null, ab} , { a, b} etc.

--

iii) Non distinguishable state: Two states are said to be non

distinguishable states if upon the application of same input to the two

states they yield same state as output.

iv) Transition diagrams and Transition Systems

A transition graph or a transition system is a finite directed labeled

graph in which each vertex (node) represents a state and the directed

edges indicate the transition of a state and the edges are labelled with

input. A transition graph contains:

(i) A finite set of states, one of which are designated as start state and

some of which are designated as final states.

Start state

Final state

(ii) An alphabet  of possible input letters from which input strings are

formed.

(iii) A finite set of transitions that show, how to go from some states to

some other states.

So a transition system is a 5-tuple (Q,∑,δ,q0,F)

If δ(qi,a)=qj, there is an edge labeled by 'a' from qi to qj . A

transition system accepts a string 'w' in ∑* if

Transition Table

The description of the automation can be given in the form

of transition table also, in which we tabulate the details of the

transitions defined be the automaton from one state to another.

v) Mealy machine Output function maps ∑ X Q into delta

Z(t) =  (q(t),x(t))

Moore machine Output function maps Q into delta

Z(t) =  (q(t))

--

vi)

vii) A string x is accepted by a finite automaton

 M = (Q, ∑, δ, q0, F)

 If δ(q0,x) = q for some q ϵ F

viii) viii) S->aAB

 ->aBbaB

 ->abbaB

 ->abbabB

 ->abbabc

ix) Context sensitive language are derived from context sensitive

grammar containing production of the form

Type 1 production : A production of the form φAψ->φαψ is called a type

1 production if α not equal to null Where φ is the left context ψ is the right

context A € Vn and α (Vn U ∑)
*

The production S-> null is also allowed in a type 1 grammar but in this

case S does not appear on tht right hand side of any production.

Example:

2A->1B

B->0

--

X) A grammar in containing all derivation of the form A-> BC

,A->a Is said to be in CNF where A,B,C belongs to Vn and a

belongs to ∑

SECTION B

2.a

S->XX (s->XX)

S->bXX (S->bX)

S->bbXX (X->bX)

S->bbaX (X->a)

S->bbaXXX (X->XXX)

S->bbaaXX (X->a)

S->bbaaaX (X->a)

S->bbaaaXb (X->Xb)

S->bbaaaab (X->a)

--

2.b Introduction to Turing Machine

Turing Machine

Basic model of a Turing machine consists of

i) a two way infinite tape,

ii) a read/write head and

iii) a finite control.

 Input Tape

Read Write Head

Finite

Control

At any time, action of a Turing machine depends on the

current state and the input symbol and involves (i) change of state

(ii) writing a symbol in the cell scanned (iii) head movement to

the left or right and (iv) Turing machine halts or not halts. A

Turing machine may utilize the tape cells beyond the input limits

and ‘Blank’ cell plays a significant role in the working of a

Turing machine. Turing machine halts in any situation for which

a transition is not defined. Unlike the previously dealt automata,

it is possible that a Turing machine may not halt. At any state a

Turing machine can halt or not halt. ie, it ends in accepting state

if it successfully halts(accept halt). Otherwise it halts in any non

accepting state (reject halt).

A turing machine M is a 7-tuple namely (Q, ∑,┌,δ,q0,b,F)

Where

Q is a finite nonempty set of states

┌ is a finite nonempty set of tape symbol

B ϵ ┌ is the blank

∑ is a nonempty set of input symbols and is a subset of ┌ and b

does not belongs to ∑

Δ is the transition function mapping (q,x) onto (q’,y,D)

Q0 ϵ Q is the initial state

F is a subset or equal to Q

Left move :

Suppose δ (q,xi) =(p,y,L)

Id before processing

X1,x2…………………….xi-1 q xi ………………..xn

After processing

X1,……………….xi-2 p xi-1 y xi+1……………xn

Right move:

Suppose δ (q,xi) =(p,y,R)

Id before processing

X1,x2…………………….xi-1 q xi ………………..xn

After processing

X1,……………….xi-2 xi-1 y p xi+1……………xn

means that  is written in the current cell,  gives the movement of the head (L/R), and 

denotes the new state into which Turing machine enters.

Eg:

Present state Tape symbols

 0 1 b

q1 0Rq1 1Lq2

q2 0Lq2 1Lq2 bRq3

q3 bRq4 bRq5

q4 0Rq4 1Rq4 0Rq5

*q5 0Lq2

(iii) transition diagram

In the transition diagram the labels are triples of the form (,,) where , Є Ґ and 

Є {L,R}. When there is a directed edge from qi to qj with label (,,), it means

that (qi, )=(qj, , ).

During the processing of an input string, suppose the Turing machine enters qi and

R/W head scans the present symbol . As a result, the symbol  is written in the cell

under R/W head. The R/W head moves to the left or right, depending on , and the new state is

qj.

Ie,

(,,)

qi qj

eg:

Design a Turing machine to recognize all strings consisting of even number of 1’s.

Solution: (i) q1 is the initial state. M enters state q2 on scanning 1 and writes b.

1) If M is in state q2 and scans 1, it enters q1 and writes b.

 q1 is the only accepting state.

So M accepts a string if it exhausts all input symbols and finally in state q1. Symbolically,

M=({q1,q2},{1},{1,b}, , q1,b,{q1}) Where  is

defined by

Present state Input symbols

 1 B

*q1 XRq2 BLq1

q2 XRq1

3.a

 W0 = { A, X} as A-> a and X-> ad

 W1= {A,X,S} as S->bX

 W2= { A,X,S} as A-> bSX

Phase II

S->bX

X->ad

--

3b. S->aSb

 S-> null

--

4a. Types of grammar:

A type 0 grammar is any phase structure grammar without any

restriction

A->a

A grammar is called type 1 or context dependent if all its production are

type 1 productions. The production S-> null is also allowed in a type 1

grammar but in this case S does not appear on tht right hand side of any

production.

 Type 1 production : A production of the form φAψ->φαψ is called a

type 1 production if α not eqal to null

2A->1B

B->0

A grammar is called a type 2 grammar if it contains only type 2

productions .It is also called a context free grammar A language

generated by a context free grammar is called a type 2 language or a

context free language

A type 2 production is a production of the form A->α where A € Vn and

α (Vn U ∑)
*

Example S-> Aa, A->a

A grammar is called a type 3 grammar if it contains only type 3

productions . The production S-> null is also allowed in a type 1

grammar but in this case S does not appear on tht right hand side of any

production.

A type 3 production is a production of the form A->a or A-> aB where

A , B € Vn and a ϵ∑

Example B-> aC, A->a

 4 b. i) (a+b)
*
a

 ii) bb(bbb)
*

5.a E-> T X

 X-> +T X | null

 T-> T Y

 Y-> *F Y | null

 5.b Q0---1-----Q1----1----Q2----1----Q3----0----Q4----1-----Q5*

 -

 -------0----Q6----0-----Q7---1----Q8*

6.a)

Moore machine

A Moore machine M is a six-tuple namely (Q, ∑,delta,δ,,q0)

Where

Q is a finite nonempty set of states

∑ is a nonempty set of input symbols

Δ is the output alphabet

Δ is the transition function mapping ∑ X into Q

 is the output function mapping Q into Q

Q0 ϵ Q is the initial state

A mealy machine is a six tuple (Q, ∑,delta,δ,,q0) where all the symbol

except  have the same meaning as in the Moore machine  is the output

function mapping ∑ X Q into delta

In practice mixed models are often used.

Mealy machine Output function maps ∑ X Q into delta

Z(t) =  (q(t),x(t))

Moore machine Output function maps Q into delta

Z(t) =  (q(t))

Moore Machine

__

Present state Next state Output

 a=0 a=1

__

->q1 q1 q2 0

 Q2 q1 q3 0

 Q3 q1 q3 1

__

Mealy Machine

__

Present state Next state

 a=0 out1 a=1 out2

__

->q1 q1 0 q2 0

 Q2 q1 0 q3 0

 Q3 q1 0 q3 1

__

6.b

7a. S-> 0B

 ->OOBB

 ->OO1B

 ->0011SS

 ->00110B

 ->001101S

 ->0011010B

 ->00110101

 S-> 0B

 ->00BB

 ->00B1S

 ->00B10B

->00B101S

->00B1010B

->00B10101

->00110101

Derivation tree:

Ambiguous grammar:

A context free grammar G isambigious if there exists some w ϵ L(G)

which is ambiguous

Example G= ({ S},{a,b,+,*},P,S) Where P consists of

S-> S+S | S*S | a | b

We have two derivation trees for a+a*b

S-> S+S->a+S->a+S*S->a+a*S->a+a*b

S->S*S->S+S*S->a+S*S->a+a*S->a+a*b

--

 8.a Example 1: Construct a PDA that accepts the language

.

, and consists of the following transitions

8.b Step-1 : Find all the edges starting from v2

 Step-2: Duplicate all these edges starting from v1 without

changing the edge label

 Step-3 If v1 is an initial state, make v2 also as initial state

 Step-Iv If v2 is a final state make v1 as the final state.

