M.Sc-IT (OLD) Examination, 2013

Theory of Computation

Paper: Fourth

1.a. W = aaabbb

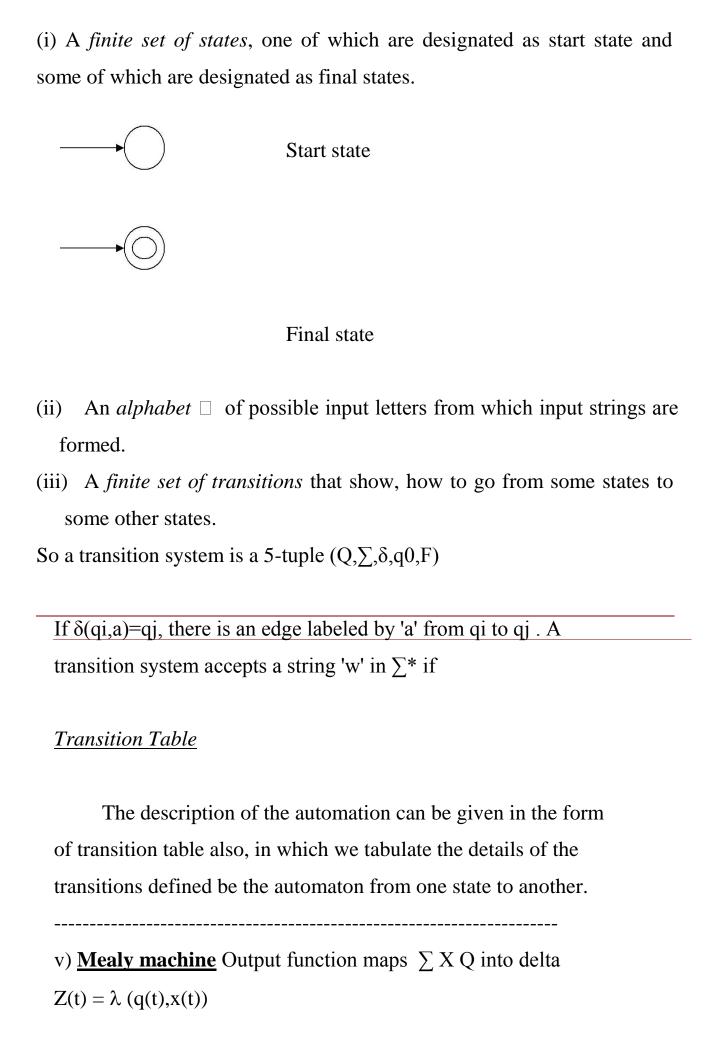
b. L={
$$a^nb^n$$
, $n>=0}$

ii) The set which is expressed by regular expression is regular set. Ex: {null, ab}, { a, b} etc.

iii) Non distinguishable state: Two states are said to be non distinguishable states if upon the application of same input to the two states they yield same state as output.

iv) <u>Transition diagrams and Transition Systems</u>

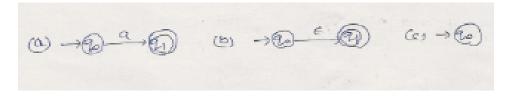
A transition graph or a transition system is a finite directed labeled graph in which each vertex (node) represents a state and the directed edges indicate the transition of a state and the edges are labelled with input. A transition graph contains:



Moore machine Output function maps Q into delta

$$Z(t) = \lambda (q(t))$$

vi)



vii) A string x is accepted by a finite automaton

$$M = (Q, \sum, \delta, q0, F)$$

If
$$\delta(q_0,x) = q$$
 for some $q \in F$

viii) viii) S->aAB

- ->aBbaB
- ->abbaB
- ->abbabB
- ->abbabc

ix) Context sensitive language are derived from context sensitive grammar containing production of the form

Type 1 production : A production of the form $\phi A\psi -> \phi \alpha \psi$ is called a type 1 production if α not equal to null Where ϕ is the left context ψ is the right context $A \in V_n$ and $\alpha (V_n \cup \Sigma)^*$

case S does no	ot appear on tht right ha	nd side of any production.
Example:		
2A->1B		
B->0		
_	_	derivation of the form $A \rightarrow BC$ here A,B,C belongs to V_n and a
belongs to ∑		
	SECT	ON B
2.a		
S->XX	(s->XX)	
S->bXX	(S->bX)	
S->bbXX	(X->bX)	

The production S-> null is also allowed in a type 1 grammar but in this

S->bbaX	(X->a)
S->bbaXXX	(X->XXX)
S->bbaaXX	(X->a)
S->bbaaaX	(X->a)
S->bbaaaXb	(X->Xb)

S->bbaaaab (X->a)

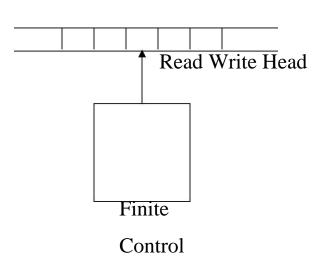
2.b Introduction to Turing Machine

Turing Machine

Basic model of a Turing machine consists of

- i) a two way infinite tape,
- ii) a read/write head and
- iii) a finite control.

Input Tape



At any time, action of a Turing machine depends on the current state and the input symbol and involves (i) change of state (ii) writing a symbol in the cell scanned (iii) head movement to the left or right and (iv) Turing machine halts or not halts. A Turing machine may utilize the tape cells beyond the input limits and 'Blank' cell plays a significant role in the working of a Turing machine. Turing machine halts in any situation for which a transition is not defined. Unlike the previously dealt automata, it is possible that a Turing machine may not halt. At any state a Turing machine can halt or not halt. ie, it ends in accepting state if it successfully halts(accept halt). Otherwise it halts in any non accepting state (reject halt).

A turing machine M is a 7-tuple namely $(Q, \sum, \Gamma, \delta, q0, b, F)$ Where

Q is a finite nonempty set of states

r is a finite nonempty set of tape symbol

 $B \in \Gamma$ is the blank

 Σ is a nonempty set of input symbols and is a subset of Γ and b does not belongs to Σ

 Δ is the transition function mapping (q,x) onto (q',y,D)

 $Q0 \in Q$ is the initial state

F is a subset or equal to Q

Left move:

Suppose δ (q,xi) =(p,y,L)
Id before processing
X1,x2xi-1 q xixn
After processing
X1,xi-2 p xi-1 y xi+1xn
Right move:
Suppose δ (q,xi) =(p,y,R)
Id before processing
X1,x2xi-1 q xixn
After processing
X1,xi-2 xi-1 y p xi+1xn

means that α is written in the current cell, β gives the movement of the head (L/R), and γ denotes the new state into which Turing machine enters.

Eg:

Present state	Tape symbols			
	0	1	b	
qı	oRq1		1Lq2	
q 2	oLq2	1Lq2	bRq3	
q 3	bRq4	bRq5		
q 4	oRq4	1Rq4	oRq5	
*95			oLq2	

(iii) transition diagram

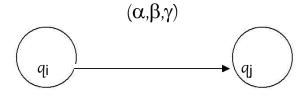
In the transition diagram the labels are triples of the form (α,β,γ) where $\alpha,\beta\in\Gamma$ and γ

 \in {L,R}. When there is a directed edge from qi to qj with label (α,β,γ) , it means that $\delta(qi,\alpha)$ = (qj,β,γ) .

During the processing of an input string, suppose the Turing machine enters $q\dot{\textbf{i}}$ and R/W head scans the present symbol α . As a result, the symbol β is written in the cell

under R/W head. The R/W head moves to the left or right, depending on γ , and the new state is $q \mathbf{j}$.

le,



eg:

Design a Turing machine to recognize all strings consisting of even number of 1's.

<u>Solution</u>: (i) q1 is the initial state. M enters state q2 on scanning 1 and writes b.

1) If M is in state q2 and scans 1, it enters q1 and writes b.

q1 is the only accepting state.

So M accepts a string if it exhausts all input symbols and finally in state q1. Symbolically,

M=({q1,q2},{1},{1,b},
$$\delta,$$
 q1,b,{q1}) Where δ is

defined by

Present state	Input symbols		
	1	В	
*41	XRq2	BLqı	
q2	XRqı		

3.a

$$W0 = \{ A, X \} \text{ as } A \rightarrow a \text{ and } X \rightarrow ad$$

$$W1 = \{A, X, S \} \text{ as } S \rightarrow bX$$

$$W2 = \{ A,X,S \} \text{ as } A -> bSX$$

Phase II

S->bX

X->ad

3b. S->aSb

S-> null

4a. Types of grammar:

A type 0 grammar is any phase structure grammar without any restriction

A->a

A grammar is called type 1 or context dependent if all its production are type 1 productions. The production S-> null is also allowed in a type 1 grammar but in this case S does not appear on the right hand side of any production.

Type 1 production : A production of the form $\phi A\psi -> \phi \alpha \psi$ is called a type 1 production if α not eqal to null

B - > 0

A grammar is called a type 2 grammar if it contains only type 2 productions .It is also called a context free grammar A language generated by a context free grammar is called a type 2 language or a context free language

A type 2 production is a production of the form A-> α where $\ A \in V_n$ and $\alpha \left(V_n \ U \ \Sigma\right)^*$

Example $S \rightarrow Aa$, $A \rightarrow a$

A grammar is called a type 3 grammar if it contains only type 3 productions. The production S-> null is also allowed in a type 1 grammar but in this case S does not appear on tht right hand side of any production.

A type 3 production is a production of the form A->a or A-> aB where A , B $\in V_n$ and a $\varepsilon \Sigma$

Example $B \rightarrow aC$, $A \rightarrow a$

4 b. i) (a+b)*a
ii) bb(bbb)*

5.a E-> T X

$$X \rightarrow +T X \mid null$$

$$T \rightarrow T Y$$

$$Y \rightarrow *F Y | null$$

$$5.b \quad Q0---1----Q1----1----Q3----0---Q4----1-----Q5*$$

-

6.a)

Moore machine

A Moore machine M is a six-tuple namely $(Q, \sum, delta, \delta, \lambda, q0)$

Where

Q is a finite nonempty set of states

 \sum is a nonempty set of input symbols

 Δ is the output alphabet

 Δ is the transition function mapping $\sum X$ into Q

 λ is the output function mapping Q into Q

 $Q0 \in Q$ is the initial state

A mealy machine is a six tuple $(Q, \sum, delta, \delta, \lambda, q0)$ where all the symbol except λ have the same meaning as in the Moore machine λ is the output function mapping $\sum X Q$ into delta

In practice mixed models are often used.

<u>Mealy machine</u> Output function maps $\sum X Q$ into delta $Z(t) = \lambda (q(t),x(t))$

Moore machine Output function maps Q into delta

$$Z(t) = \lambda (q(t))$$

Moore Machine

Present state		Next state		Output	
		a=0	a=1		
->q1		q1	q2		0
Q2	q1	(₄ 3	0	
Q3	q1	(q 3	1	

Mealy Machine

Present state

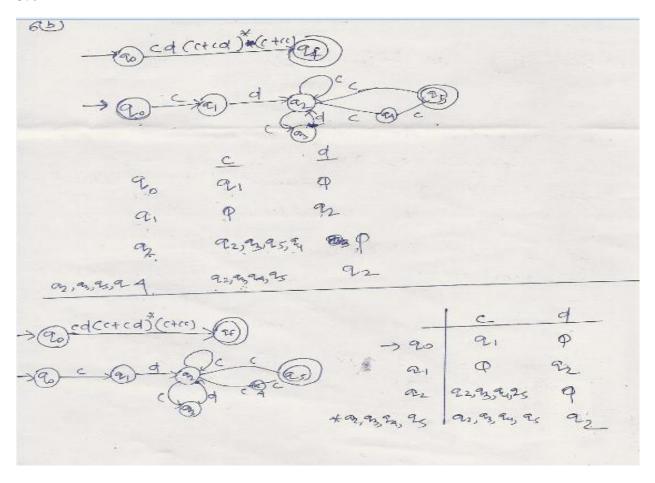
a=0 out1

Next state

a=1 out2

->q1	q1	0	q2	0
Q2	q1	0	q3	0
Q3	q1	0	q3	1

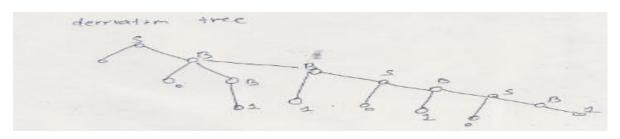
6.b



7a. S-> 0B
->OOBB

- ->OO1B
- ->0011SS
- ->00110B
- ->001101S
- ->0011010B
- ->00110101
- $S \rightarrow 0B$
 - ->00BB
- ->00B1S
- ->00B10B
- ->00B101S
- ->00B1010B
- ->00B10101
- ->00110101

Derivation tree:



Ambiguous grammar:

A context free grammar G isambigious if there exists some $w \in L(G)$ which is ambiguous

Example $G = (\{S\}, \{a,b,+,*\}, P,S)$ Where P consists of

$$S -> S + S | S * S | a | b$$

We have two derivation trees for a+a*b

$$S->S+S->a+S->a+S*S->a+a*S->a+a*b$$

8.a Example 1: Construct a PDA that accepts the language $\{a^nb^n \mid n \geq 0\}$

$$M = (Q, \Sigma, \Gamma, \delta, q_1, Z, F)$$

$$Q = \{q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{a, b\}$$

$$\Gamma = \{a, b, z\}$$

 $F = \{q_1, q_4\}$, and \mathcal{E} consists of the following transitions

$$1.\,\delta(q_1,a,z)=\left\{(q_2,az)\right\}$$

2.
$$\delta(q_2, a, a) = \{(q_2, aa)\}$$

3.
$$\delta(q_2,b,a) = \{(q_3,\in)\}$$

4.
$$\delta(q_3, b, a) = \{(q_3, \in)\}$$

5.
$$\delta(q_3, \epsilon, z) = \{(q_4, z)\}$$

8.b Step-1: Find all the edges starting from v2

Step-2: Duplicate all these edges starting from v1 without changing the edge label

Step-3 If v1 is an initial state, make v2 also as initial state Step-Iv If v2 is a final state make v1 as the final state.

